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AbstractAbstract

Atmospheric aerosols affect climatic change and humanAtmospheric aerosols affect climatic change and human
health. Recently, this fact has fueled the need forhealth. Recently, this fact has fueled the need for
instrumentation that can provide real-time analysis of the size,instrumentation that can provide real-time analysis of the size,
mass and chemical composition of aerosols in both the fieldmass and chemical composition of aerosols in both the field
and laboratory. The Aerosol Mass Spectrometer (AMS)and laboratory. The Aerosol Mass Spectrometer (AMS)
developed by Aerodyne Research, Inc. combines andeveloped by Aerodyne Research, Inc. combines an
innovative aerodynamic aerosol inlet developed at theinnovative aerodynamic aerosol inlet developed at the
University of Minnesota with standard vacuum and massUniversity of Minnesota with standard vacuum and mass
spectrometric technologies to achieve this goal.  The inletspectrometric technologies to achieve this goal.  The inlet
focuses particles into a narrow beam and transports themfocuses particles into a narrow beam and transports them
efficiently into a vacuum where their aerodynamic particleefficiently into a vacuum where their aerodynamic particle
size can be determined with a particle time-of-flight (TOF)size can be determined with a particle time-of-flight (TOF)
measurement.  Then, time-resolved particle mass detection ismeasurement.  Then, time-resolved particle mass detection is
performed with a performed with a quadrupole quadrupole mass spectrometer after flashmass spectrometer after flash
vaporization on a resistively heated surface (Jayne vaporization on a resistively heated surface (Jayne et. alet. al.,.,
1999).1999).

In order to test the efficiency of the AMS, its results must beIn order to test the efficiency of the AMS, its results must be
compared to those of more established technologies.  Acompared to those of more established technologies.  A
constant output atomizer was used to produce aerosols.constant output atomizer was used to produce aerosols.
Particles of a certain size were then selected using aParticles of a certain size were then selected using a
differential mobility analyzer (DMA).  The output from the DMAdifferential mobility analyzer (DMA).  The output from the DMA
was then fed to both a condensation particle counter (CPC)was then fed to both a condensation particle counter (CPC)
and the AMS, and the results were compared. NHand the AMS, and the results were compared. NH44NONO33, DOP,, DOP,
and oleic acidand oleic acid  aerosols were studied in this manner.aerosols were studied in this manner.
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Real Time Aerosol Measurement and Data ProcessingReal Time Aerosol Measurement and Data Processing
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AerosolAerosol
SamplingSampling
ChamberChamber ϖϖ The aerosol sampling chamber (ASC) couplesThe aerosol sampling chamber (ASC) couples

the aerodynamic particle beam-forming lens tothe aerodynamic particle beam-forming lens to
the vacuum system.the vacuum system.

ϖϖ The lens tube consists of six precisionThe lens tube consists of six precision
machined orifice lenses ranging from 5 mmmachined orifice lenses ranging from 5 mm
inner diameter at the entrance to 3 mm innerinner diameter at the entrance to 3 mm inner
diameter at the exit.diameter at the exit.

ϖϖ The lens focuses particles into a narrow beamThe lens focuses particles into a narrow beam
(~1 mm diameter) with nearly 100% particle(~1 mm diameter) with nearly 100% particle
transmission efficiency to the detector fortransmission efficiency to the detector for
particles with diameters between 70 and 500particles with diameters between 70 and 500
nmnm..



Calculated Particle Trajectories in Aerodynamic LensCalculated Particle Trajectories in Aerodynamic Lens
100 nm Diameter Unit Density Spheres100 nm Diameter Unit Density Spheres

(Fluent ver 4.47)(Fluent ver 4.47)

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

R
a
d
ia

l C
o
o
rd

in
a
te

 (
m

)

0.350.300.250.200.150.100.050.00

Axial Coordinate (m)

2.4 torr Inlet 10-3 torr Exit

LensLens
TransmissionTransmission

EfficiencyEfficiency



1.0

0.8

0.6

0.4

0.2

A
M

S
 C

o
lle

ct
io

n
 E

ff
ic

ie
n

cy

10
1

2 4 6

10
2

2 4 6

10
3

2 4 6

10
4

Aerodynamic Diameter (nm)

 FLUENT Model
 Counting Mode
 Integrating Mode 

Measured Particle Collection Efficiencies Compared toMeasured Particle Collection Efficiencies Compared to
FUENT Model Prediction NHFUENT Model Prediction NH44NONO33

ϖϖ 100% for 70 nm100% for 70 nm
to 500 nm diameterto 500 nm diameter
particles.particles.
ϖϖ Particle collectionParticle collection
drops off for smalldrops off for small
sizes due to reducedsizes due to reduced
focusing efficiencyfocusing efficiency
ϖϖ CollectionCollection
decreases for largerdecreases for larger
particles due toparticles due to
impactionimpaction losses at losses at
lens entrance.lens entrance.

CollectionCollection
EfficiencyEfficiency



Particle-Particle-
SizingSizing
ChamberChamber

ϖϖ The final orifice of the lens controls theThe final orifice of the lens controls the
supersonic gas expansion and particlesupersonic gas expansion and particle
acceleration into the particle-sizing chamberacceleration into the particle-sizing chamber
(PSC):(PSC):
ϖϖ During the gas expansion, smaller diameterDuring the gas expansion, smaller diameter

particles accelerate to faster velocities thanparticles accelerate to faster velocities than
larger ones due to different larger ones due to different inertiasinertias;  thus, a;  thus, a
distribution of velocities is obtained.distribution of velocities is obtained.

ϖϖ The particle beam enters the vacuum-pumpedThe particle beam enters the vacuum-pumped
PSC, and the beam is chopped by a 5 cmPSC, and the beam is chopped by a 5 cm
diameter wheel with two radial slits 180 degreesdiameter wheel with two radial slits 180 degrees
apart;  an infrared photo-diode detectorapart;  an infrared photo-diode detector
monitors the slit that the beam passes throughmonitors the slit that the beam passes through
and defines the start of the Time of Flight (TOF)and defines the start of the Time of Flight (TOF)
measurement.measurement.

ϖϖ Using the chopper and the detection time, theUsing the chopper and the detection time, the
TOF can be determined.  Coupled with a knownTOF can be determined.  Coupled with a known
flight distance, the particles velocity and thusflight distance, the particles velocity and thus
aerodynamic diameter can be obtained.aerodynamic diameter can be obtained.
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ParticleParticle
DetectionDetection
ChamberChamber

ϖϖ The particle beam enters the particle detectionThe particle beam enters the particle detection
chamber (PDC) and is focused into achamber (PDC) and is focused into a
resistively heated closed-end tube whereresistively heated closed-end tube where
volatile and semi-volatile constituents in or onvolatile and semi-volatile constituents in or on
the particles flash vaporize.the particles flash vaporize.

ϖϖ The vaporization source is coupled to anThe vaporization source is coupled to an
electron impact electron impact ionizer ionizer which provides highwhich provides high
electron emission current and improved ionelectron emission current and improved ion
focusing and ion extraction.focusing and ion extraction.

ϖϖ The The ionizer ionizer is coupled to a is coupled to a quadrupole quadrupole massmass
spectrometer which can count pulses fromspectrometer which can count pulses from
individual particles and determine mass andindividual particles and determine mass and
chemical composition.chemical composition.
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PerformancePerformance
FactorsFactors

ϖϖ Particles must vaporize to be detectedParticles must vaporize to be detected..
Efficient detection limited to volatile and semi-Efficient detection limited to volatile and semi-
volatile species.volatile species.

ϖϖ Particles must vaporize efficiently (fast).Particles must vaporize efficiently (fast).
Influences resolution of aerodynamic sizeInfluences resolution of aerodynamic size
measurementmeasurement..

ϖϖ Fragmentation of molecular species from theFragmentation of molecular species from the
electron impact ionization process.electron impact ionization process.

Molecular components can be detected at theMolecular components can be detected at the
same m/z ratio.same m/z ratio.



ExperimentExperiment ϖϖ Produce polydisperse DOP, NHProduce polydisperse DOP, NH44NONO33, or, or
oleic acid aerosols with atomizer.oleic acid aerosols with atomizer.

ϖϖ Select particle size with DifferentialSelect particle size with Differential
Mobility Analyzer (DMA) in range whereMobility Analyzer (DMA) in range where
transmission efficiency is < 100 %.transmission efficiency is < 100 %.

ϖϖ Sample DMA output concurrently withSample DMA output concurrently with
Condensation Particle Counter (CPC)Condensation Particle Counter (CPC)
and AMS.and AMS.

ϖϖ Generate number density plot withGenerate number density plot with
CPC data and use model to determineCPC data and use model to determine
time of flight (TOF) for multiple chargetime of flight (TOF) for multiple charge
diametersdiameters..

ϖϖ Compare model TOF output to AMSCompare model TOF output to AMS
output.output.

Modeling AMS Performance using DMAModeling AMS Performance using DMA
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MultipleMultiple
ChargeCharge

DiametersDiameters

EE

Forces on particle in DMAForces on particle in DMA

Boltzmann Charge DistributionBoltzmann Charge Distribution

❖❖ Aerosols have a Boltzmann chargeAerosols have a Boltzmann charge
distribution.distribution.

❖❖ DMA selects only positive charges:DMA selects only positive charges:

❖❖ Electric field applied to selectElectric field applied to select
desired diameter with charge q = 1.desired diameter with charge q = 1.

❖❖ Same electric field also selectsSame electric field also selects
diameters of higher charges (q = 1,diameters of higher charges (q = 1,
2, etc.) with same terminal velocity2, etc.) with same terminal velocity
as desired diameter.as desired diameter.

q=charge, D=diameter, v=velocity, c(D)=slipq=charge, D=diameter, v=velocity, c(D)=slip
factor, E=electric field, factor, E=electric field, etaeta==Stoke’s constStoke’s const..
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Blue model line accounts forBlue model line accounts for::
1) CPC number distribution1) CPC number distribution
parameters.parameters.
2) DMA transfer function2) DMA transfer function
3) polydisperse input aerosol3) polydisperse input aerosol
Boltzmann distributionBoltzmann distribution
4) a linear mass weighted4) a linear mass weighted
detection schemedetection scheme
5) 5) AMS particle collectionAMS particle collection
efficiencyefficiency
6) AMS transfer function6) AMS transfer function

❖❖ Atomize polydisperse aerosols and obtain numberAtomize polydisperse aerosols and obtain number
density with CPC.density with CPC.

❖❖ Select specific diameter of atomized aerosols withSelect specific diameter of atomized aerosols with
DMA and inject into AMS.DMA and inject into AMS.

❖❖ Compare AMS results with model results toCompare AMS results with model results to
determine collection efficiency.determine collection efficiency.

IntegrationIntegration
ModeMode



IdealIdeal
ExperimentExperiment

❖❖ Atomize polydisperse polystyrene (PSL) spheres ofAtomize polydisperse polystyrene (PSL) spheres of
known diameter and inject into CPC and AMS.known diameter and inject into CPC and AMS.

❖❖ Ideally, the signal in the CPC will be the signalIdeally, the signal in the CPC will be the signal
from the AMS times the collection coefficient,  T.from the AMS times the collection coefficient,  T.

❖❖ Unfortunately, contamination within the PSLUnfortunately, contamination within the PSL
suspension water is counted by the CPC but not thesuspension water is counted by the CPC but not the
AMS, so T cannot be determined this way for smallAMS, so T cannot be determined this way for small
particles.particles.

CPC =CPC =
AMS * TAMS * T

Ideal Determination of TransmissionIdeal Determination of Transmission AMS signal for 304 +/- 6 nm PSL spheresAMS signal for 304 +/- 6 nm PSL spheres
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